Higher recovery and better energy dissipation at faster strain rates in carbon nanotube bundles: an in-situ study.
نویسندگان
چکیده
We report mechanical behavior and strain rate dependence of recoverability and energy dissipation in vertically aligned carbon nanotube (VACNT) bundles subjected to quasi-static uniaxial compression. We observe three distinct regimes in their stress-strain curves for all explored strain rates from 4 × 10(-2) down to 4 × 10(-4)/sec: (1) a short initial elastic section followed by (2) a sloped plateau with characteristic wavy features corresponding to buckle formation and (3) densification characterized by rapid stress increase. Load-unload cycles reveal a stiffer response and virtually 100% recoverability at faster strain rates of 0.04/sec, while the response is more compliant at slower rates, characterized by permanent localized buckling and significantly reduced recoverability. We propose that it is the kinetics of attractive adhesive interactions between the individual carbon nanotubes within the VACNT matrix that governs morphology evolution and ensuing recoverability. In addition, we report a 6-fold increase in elastic modulus and gradual decrease in recoverability (down to 50%) when VACNT bundles are unloaded from postdensification stage as compared with predensification. Finally, we demonstrate energy dissipation capability, as revealed by hysteresis in load-unload cycles. These findings, together with high thermal and electrical conductivities, position VACNTs in the "unattained-as-of-to-date-space" in the material property landscape.
منابع مشابه
In situ Mechanical Testing Reveals Periodic Buckle Nucleation and Propagation in Carbon Nanotube Bundles
Uniaxial compression studies are performed on 50-mm-diameter bundles of nominally vertical, intertwined carbon nanotubes grown via chemical vapor deposition from a photolithographically defined catalyst. The inhomogeneous microstructure is examined, demonstrating density and tube orientation gradients, believed to play a role in the unique periodic buckling deformation mechanism. Through in sit...
متن کاملA multiscale study of high performance double-walled nanotube-polymer fibers.
The superior mechanical behavior of carbon nanotubes (CNT) and their electrical and thermal functionalities has motivated researchers to exploit them as building blocks to develop advanced materials. Here, we demonstrate high performance double-walled nanotube (DWNT)-polymer composite yarns formed by twisting and stretching of ribbons of randomly oriented bundles of DWNTs thinly coated with pol...
متن کاملA molecular dynamics simulation of water transport through C and SiC nanotubes: Application for desalination
In this work the conduction of ion-water solution through two discrete bundles of armchair carbon and silicon carbide nanotubes, as useful membranes for water desalination, is studied. In order that studies on different types of nanotubes be comparable, the chiral vectors of C and Si-C nanotubes are selected as (7,7) and (5,5), respectively, so that a similar volume of fluid is investigated ...
متن کاملA molecular dynamics simulation of water transport through C and SiC nanotubes: Application for desalination
In this work the conduction of ion-water solution through two discrete bundles of armchair carbon and silicon carbide nanotubes, as useful membranes for water desalination, is studied. In order that studies on different types of nanotubes be comparable, the chiral vectors of C and Si-C nanotubes are selected as (7,7) and (5,5), respectively, so that a similar volume of fluid is investigated ...
متن کاملRubber/Carbon Nanotube Nanocomposite with Hyperelastic Matrix
An elastomer is a polymer with the property of viscoelasticity, generally having notably low Young's modulus and high yield strain compared with other materials. Elastomers, in particular rubbers, are used in a wide variety of products ranging from rubber hoses, isolation bearings, and shock absorbers to tires. Rubber has good properties and is thermal and electrical resistant. We used carbon ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 6 3 شماره
صفحات -
تاریخ انتشار 2012